Supporting information:

ACTIVATED CARBON AND BIOCHAR AMENDMENTS DECREASE POREWATER CONCENTRATIONS OF POLYCYCLIC AROMATIC HYDROCARBONS (PAHs) IN SEWAGE SLUDGES

Patryk Oleszczuk^{1,2*}, Sarah Hale¹, Johannes Lehmann³, Gerard Cornelissen^{1,4,5}

¹Department of Environmental Engineering, Norwegian Geotechnical Institute NGI, Oslo, Norway, ²Institute of Soil Sciences and Environmental Management, University of Life Sciences, Lublin, Poland, ³Department of Crop and Soil Sciences, 908 Bradfield Hall, Cornell University, Ithaca, NY 14853, USA, ⁴Department of Applied Environmental Sciences (ITM), Stockholm University, Stockholm, Sweden, ⁵Institute for Plant and Environmental Sciences, University of Life Sciences (UMB), 5003 Ås, Norway.

* patryk.oleszczuk@up.lublin.pl

Journal: Bioresource Technology Number of pages: 5 Number of tables: 2

Calculation of KAC/Kbiochar for sewage sludge with AC/biochar

Sorption to AC in an AC-amended sediment was calculated with a nonlinear Freundlich isotherm (1):

$$C_{s} = f_{TOC} K_{TOC} C_{PW} + f_{AC} K_{AC} C_{PW}^{nF,AC}$$
(1)
$$K_{AC} = \frac{C_{s} - f_{TOC} K_{TOC} C_{PW}}{f_{AC} C_{PW}^{nF,AC}}$$
(2)

where C_S is HOC concentration in sediment or soil (ng/kg dry weight), C_{PW} is porewater HOC concentration determined with POM passive samplers (ng/L), f_{TOC} and f_{AC} are the fractions of TOC and AC (either freshly added or field aged), respectively. K_{TOC} and K_{AC} are the sorbent-water distribution coefficients for TOC (L/kg) and AC, respectively [(ng/kg)/(ng/L)^{nF}]. K_{TOC} was calculated as the measured distribution coefficients for unamended sediment normalized to sediment organic carbon content ($K_d=C_S/C_{PW}$ f_{OC}). Porewater concentrations were calculated from measured POM concentration using K_{POM} values in Cornelissen et al. (2) for POM-55 µm and the relationship $K_{POM}=C_{POM}/C_{PW}$. In the present study, the Freundlich exponent of AC sorption ($n_{F,AC}$) was assumed to be 0.8 based on recent modeling results by Werner et al. (3) and studies by McDonough et al. (4). Here a $n_{F,BC}$ value of 0.8 is used under the assumption that the main sorption mechanisms are similar for various PAHs in the same AC material.

PAHs			CF			BP2							
	AC dose [%]				Augroge	сD		AC do	A	CD			
	0.5%	2%	5%	10%	- Average	SD	0.5%	2%	5%	10%	– Average	5D	
Na	6.75	6.40	6.41	5.91	6.4	0.4	6.96	6.64	6.55	5.99	6.5	0.4	
Fl	7.40	7.37	7.10	6.99	7.2	0.2	7.34	7.36	7.24	7.20	7.3	0.1	
Phen	8.09	7.81	8.03	7.79	7.9	0.2	7.99	8.01	8.09	7.79	8.0	0.1	
Ant	8.06	7.94	7.96	7.42	7.9	0.3	8.06	8.07	7.90	7.32	7.8	0.4	
Fln	8.36	7.97	8.21	8.13	8.2	0.2	8.22	8.09	7.99	7.94	8.1	0.1	
Pyr	8.31	7.92	8.09	8.03	8.1	0.2	8.18	7.99	7.90	7.80	8.0	0.2	
BaA	8.81	8.55	8.63	8.47	8.6	0.2	8.72	8.58	8.48	8.33	8.5	0.2	
Ch	8.64	8.35	8.39	8.24	8.4	0.2	8.57	8.39	8.33	8.09	8.4	0.2	
BbF	8.87	8.88	8.61	8.45	8.7	0.2	8.80	8.75	8.77	8.54	8.7	0.1	
BkF	9.17	9.08	9.35	8.67	9.1	0.3	9.12	9.00	8.95	8.59	8.9	0.2	
BaP	9.04	8.86	8.81	8.66	8.8	0.2	8.95	8.95	9.04	8.59	8.9	0.2	
Ind	9.34	9.43	9.36	9.02	9.3	0.2	9.27	9.50	9.31	9.12	9.3	0.2	
BghiP	9.42	9.60	9.16	9.17	9.3	0.2	9.44	9.42	9.25	9.19	9.3	0.1	

Table S1. The log K_{AC} [(ng/kg)/(ng/L)ⁿ] values determined on the basis of equation (2) for AC in AC-amended sewage sludge

Na - naphthalene, Fl - fluorene, Phen - phenanthrene, Ant - anthracene, Fln - fluoranthene, Pyr - pyrene, BaA - benzo[a]anthracene, Ch - chryzene, BbF - benzo[b]fluoranthene, BkF - benzo[k]fluoranthene, BaP - benzo[a]pyrene, Ind - indeno[1,2,3-cd]pyrene, BP - benzo[ghi]perylene.

PAHs	MG						PMW						
	Biochar dose [%]				Augrage	сD		Biochar	A	SD			
	0.5%	2%	5%	10%	– Average	3D	0.5%	2%	5%	10%	- Average	2D	
Na	6.68	6.11	5.76	5.47	6.0	0.5	6.72	6.23	5.89	5.63	6.1	0.5	
Fl	6.94	6.39	6.04	5.76	6.3	0.5	6.91	6.40	6.09	5.98	6.3	0.4	
Phen	7.53	6.99	6.64	6.39	6.9	0.5	7.55	7.05	6.75	6.63	7.0	0.4	
Ant	7.57	6.97	6.61	6.36	6.9	0.5	7.53	6.99	6.59	6.63	6.9	0.4	
Fln	7.95	7.36	7.04	6.72	7.3	0.5	7.96	7.44	7.18	6.97	7.4	0.4	
Pyr	7.96	7.38	7.04	6.75	7.3	0.5	7.96	7.42	7.06	6.91	7.3	0.5	
BaA	8.44	7.84	7.53	7.23	7.8	0.5	8.45	7.95	7.63	7.57	7.9	0.4	
Ch	8.32	7.73	7.40	7.09	7.6	0.5	8.33	7.81	7.46	7.36	7.7	0.4	
BbF	8.85	8.13	7.42	7.34	7.9	0.7	8.57	7.96	7.63	7.89	8.0	0.4	
BkF	8.91	8.30	8.34	7.67	8.3	0.5	8.89	8.54	8.21	8.02	8.4	0.4	
BaP	8.79	8.26	7.95	7.68	8.2	0.5	8.85	8.41	8.13	7.89	8.3	0.4	
Ind	9.00	8.40	8.12	7.83	8.3	0.5	9.05	8.66	8.49	8.35	8.6	0.3	
BghiP	9.18	8.53	8.32	7.98	8.5	0.5	9.18	8.84	8.93	8.71	8.9	0.2	

Table S2. The log $K_{biochar} (ng/kg)/(ng/L)^n$] values determined on the basis of equation (2) for biochar in biochar-amended sewage sludge

Na - naphthalene, Fl - fluorene, Phen - phenanthrene, Ant - anthracene, Fln - fluoranthene, Pyr - pyrene, BaA - benzo[a]anthracene, Ch - chryzene, BbF - benzo[b]fluoranthene, BkF - benzo[k]fluoranthene, BaP - benzo[a]pyrene, Ind - indeno[1,2,3-cd]pyrene, BP - benzo[ghi]perylen

References

- Oen, A.M.P., Elmquist-Kruså, M., Beckingham, B., Ghosh, U., Luthy, R.G., Hartnik, T., Henriksen, T., Cornelissen, G., Sorption of organic compounds to fresh and field-aged activated carbons in soils and sediments (submitted)
- 2. Cornelissen, G.; Pettersen, A.; Broman, D.; Mayer, P.; Breedveld, G. D., Field testing of equilibrium passive samplers to determine freely dissolved native polycyclic aromatic hydrocarbons concentrations. *Environ. Toxicol. Chem.* **2008**, *27*, 490-508.
- 3. Werner, D.; Hale, S. E.; Ghosh, U.; Luthy, R. G., Polychlorinated biphenyl sorption and availability in field-contaminated sediments. *Environ. Sci. Technol.* **2010**, *44*, 2809-2815.
- 4. McDonough, K. M.; Fairey, J. L.; Lowry, G. V., Adsorption of polychlorinated biphenyls to activated carbon: Equilibrium isotherms and a preliminary assessment of the effect of dissolved organic matter and biofilm loadings. *Water Res.* **2008**, *42*, 575-584.